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We present a mathematical method based on Laplace transform techniques for the 
analysis of heat capacity and thermal condnctivity measurements, for the case of thin 
film samples on substrates of finite lengths. The method is a further development of the 
heat pulse technique. This mathematical analysis is capable of separating the heat 
capacity and thermal conductivity of the sample from those of the substrate, thus 
eliminating the need for an additional measurement on the substrate alone. This fact 
substantially reduces the errors and complexity of the experiment and also makes the 
heat pulse technique the only one capable of obtaining thermal parameters on thin 
films in a single experiment. The analysis of the experimental data is performed by 
calculating several moments of the temperature rise in two thermometers as a function 
of time. Special considerations are taken to adapt the method for on-line computer 
experiments. 

Thin films have very interesting physical properties. However, because of their 
thickness, only very seldom are the films self-supporting. The use of  a substrate, 
therefore, is the usual solution. This fact does not influence the electrical measure- 
ments made on the film, but is a very big drawback in thermal transfer experiments. 
Even for relatively thick films, the heat capacity and thermal conductivity of  the 
substrate are not negligible compared to those of  the film. All the present methods 
for heat capacity measurements for thin films, including the a.c. method [1 ], ther- 
mal relaxation methods [2], or pulse methods [ 3 - 4 ] ,  lack the possibility of  separ- 
ation of the substrate thermal parameters f rom those of the film in one experiment. 
The only way to get absolute results concerning the film alone is to perform an 
additional experiment on the substrate alone [5] and to substractthe parameters 
of  the substrate f rom those of  the combined assembly of film and substrate. 

In this work we present a method based on the heat pulse technique [ 3 -  8] by 
which it would be possible to measure and separate the film and the substrate 
thermal parameters in one experiment. In the regular heat pulse technique, a 6(0- 
shaped heat pulse is introduced at one end of a one-dimensional sample. The other 
end of the sample is attached to a constant-temperature bath. At one point along 
the sample the time-dependence of the temperature is measured. From the shape 
of  the pulse at that point and the amount  of  heat introduced to the sample by the 
6 pulse, the heat capacity and thermal conductivity can be deduced with the help 
of  the mathematical method described in references [ 7 - 8 ] .  

* Supported in Dart by the Karlsruhe Nuclear Research Center. 
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In this work the heat transfer equation is solved for a one-dimensional problem 
with specified boundary conditions. The solution is based on Laplace transforms, 
and the desired parameters are found by calculating the moments of the tempera- 
ture rise at two points along the sample. The method is based on the general ideas 
shown in reference [6], and is therefore one particular case. All the Laplace trans- 
forms and their derivatives used in this work do exist mathematically, as proven 
in reference [6]. 

The sample covers only one part (usually half) of the substrate, thus dividing the 
substrate into two non-equivalent regions. One thermometer is placed in each re- 
gion. By calculating the moments of the temperature rise in each thermometer, we 
get relations involving the heat capacities and thermal conductivities of the sample 
and the substrate. Using these relations, the parameters for the sample and sub- 
strate alone can be deduced. In Section 1 of this work we present the mathematical 
problem, its solution, and the calculation of the moments. The experiments per- 
formed using this method are especially suitable for on-line computer analysis. 
In Section 2 we present special considerations necessary for an on-line experiment, 
especially those needed to overcome problems involving noise and finite measuring 
time. I~ order to check the method, we have used the analogy between one-dimen- 
sional heat transfer and electrical transmission line equations. We have built an 
analog electrical circuit, on which we measured successfully the parameters of the 
circuit by the use of an on-line computer experiment and the mathematical method 
outlined here. In Section 3 we describe that analog circuit and the experimental 
results. 

Theory 

Description of  the mathematical problem 

A thin elongated sample with the attached heater and two thermometers is shown 
in Fig. 1. The heater and the thermometers are lines of length W parallel to the 
width of the sample. Assuming a negligible thickness-to-length ratio for the sample 
and substrate (usually of the order of 5.10 -3 or lower), the resulting heat flow 
geometry is one-dimensional. The direction of this dimension will be called the 
x-axis. The one-dimensional heat conduction equation for the sample is 

K' OZT(x' t) 8T(x, t) 
~x 2 - C'p Ot (1) 

where K' is the bulk thermal conductivity, C' is the bulk specific heat, p is the 
density and T(x, t) is the temperature rise at point x and time t. It is convenient 
to use one-dimensional quantities C = C'pWh and K = K'Wh for the specific 
heat C and thermal conductivity K, respectively. We introduce R = l/K, the ther- 
mal resistivity. Actually, C and R are the heat capacity and thermal resistivity of 
unit length of the sample. By using these notations we get the heat transfer equation 
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a s  

8"ZT(x, t) (?T(x, t) 
- C R -  (2) 

8x 2 8t 

In our case, we attach the heater at x = 0. The other end of the sample is ther- 
mally "grounded" to a heat sink, at x = 2l, i.e. it has a constant temperature. 
The heat capacity and thermal resistivity of a unit length are C1 and R 1 for x ___ l', 
and C~ and Rz for x > l', respectively, where l' divides the sample into two regions. 
In the actual experimental set-up, one of the regions represents the substrate alone, 
and the other region represents the sample and substrate. The quantities Ca, C2, 
R1 and R2 are continuously distributed along the sample in the appropriate regions. 

x 

i. ,IP- 
[' 

\ \ 
1 

d 
Fig. 1. The one-dimensional geometry (H -- heater, T = thermometer) 

At time t = 0 a short-duration heat pulse of  magnitude Q calories is supplied 
to the heater. The pulse will be treated mathematically as a 6 function in time. 
[ The boundary conditions for the problem are 

T(21, t) = 0 at all t; 
T(x, 0) = 0 for x :~ 0; 
Q(O, t) = Q6(t), where Q(0, t) is the heat flow at x = 0 at time t. 

The two thermometers are placed at xa and x2, where x a _< l '  and x2 > l'. 
The mathematical problem of one-dimensional heat flow is identical to the 

problem of an electrical transmission line with negligible inductance and leakage 
[9, 10] described in Fig. 2. In this circuit the capacitances and resistances are 

Rldx  RldX R2dx R2dx 

,TT TTTTT TTTTT-T 
X = 0  X= X 1 X = I '  X= X Z X= 2[ 

Fig. 2. Electrical analog model for the heat flow problem: two transmission lines connected 
in series 
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(71 and Ca, and R1 and Rz, respectively. The changes from (71 to C2 and from R1 
to R2 occur at x = I'. In the electrical analog circuit, the voltage V and the current 
I replace the temperature T and the heat current Q, respectively. 

Laplace transform solution fo r  T(x,  t) 

The Laplace transforms [9, 10] for Eq. (2) with the complex variable s are 

R 
T(x,  s) = r(o,  s) cos h(x  " h(s)) - Q(O, s ) - ~  sin h(x  " h(s)) 

C ' s  
Q(x, s) = Q(0, s) cos h ( x "  h(s)) - T(0, S) h-- ~ sin h ( x "  h(s)) 

(3) 

where h2(s) = C �9 R �9 s 
In our case there are two regions. For x _< l' (region I) we get h21(s) = Ct �9 R1 " s, 

and for x >_ l' (region II) we get h~(s) = C2 " R~ �9 s. In region II the point x = 0 
(needed for Eq. (3)) is given by the point x = l', and x will be replaced by x -- l'. 

We thus obtain four equations, two for x >  l' and two for x < l'. By using the 
boundary conditions specified in the preceding Section we get 

T(21, s, = 0 

0(0,  s) = Q 

for all s 

Using the continuity of T(x, s) and 0(x, s) at t', together with the boundary 
conditions, we eliminate T(I', s) and Q(l ,  s) and get 

for x _> l' 

T(X~ S) -~- 
Q 

R2 ]�89 h ( ( 2 l -  x)(C~ " R2 " s) �89 
G J  

C1R2 ~ . , , 
s�89 cosh(ff(C1RlS)�89 h ( ( 2 / -  l ' )(c2e2s) �89 Jr ~--~-I san h(l (CI_RIS)~) �9 

C2/~1 ] 

(4) 
�9 sin h((21 - I ' ) (QR2s)  ~) 

and for x < I' 

'R "~ [R21~ 
Q 1 ~ ]  Cos h((21-  l ')(C2R2s)�89 ' -  x)(C1R,s)�89 IC2J 

T ( x , s )  = 

cos h(l'(CxR~s)�89 �9 cosh((2l- l')(C2R2s) ~) + I C~R~ I ~" sin h(l'(C~R~s)~) �9 
] C2R1) 

- ' '- �9 h ( ( r -  x ) ( q R l s ) 9  (5) sin h((2t /)(C2R2s)9 cos 
�9 sin h((21-  I')(C2R2s) ~) 
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The moments method 
of) 

The moments f~(x)  are defined for  any integer n asfn(X) = of T(x, t)t=dt. Applying 
0 

the general rules of  the Laplace t ransform at s = O, we get for  positive n [10] 

and for negative n 

f n ( X )  = (--l)n(OnT(x's) ) 
cOsn s = o 

or) co 

fn(X) = ~" ds(  J" da)t<-*T(x, a) 
0 s 

As shown in Ref. [6], all these derivatives and integrals exist for  the case of  
thermal  conduction.  

We will calculate the moments  for  n = - 1 ,  0, 1 and 2. These four  moments  
will give simple relations, enabling one to calculate C,, C2, R1 and R,a. Since T(x, t) 
is an experimental  value, we can compute  the moments  f~(x) directly and thus 
obtain the desired physical parameters.  

Substituting the dimensionless quantities 

l '  2 l -  l '  
7 = - -  / / -  l l 

2 l -  x 

l 
we get for  x > l '  (region I I )wi th  ~ = 

fo(x) = Q �9 ~ " l "  R2 

A(x) - 

f ~ ( x )  = - -  

f l(x) - Q ' ~ "  13"Rz [372C1R1 + (3//2 _ c~2)C2R2 + 6//?C1R2] (6) 
6 

Q'o~. I~'R2 [2574C~R ~ + (25//4 _ 10ct2//z + c~4)C2R22 z + f2(x) - 60 

+ 120//~7~C~R~ + (100//~.7 - 20~2//7)C,C,~R 2 + IO0//?C~R~R,~ + 

+ ( 3 o / / 2 7  ~ - IO~,~)QC~R1R~] 

/ t  ~ .3(7 

and for  x < l '  (region I) with c~ - - -  
1 

fo(:O = Q " l(c~R~ + //R2) 

Q . l  a 

6 

Q .  I 5 
[(~ + 25~?  - m~,9~)c~R~ + (5 ~ / /+  100~/~ ~ + 25//p - 30~2fl7 z -  

60 

- 20~aflT). C2RZR2+ 120//272C2R a + (120~fl27 ~ + 100//27 z -  60ce2//27)CZ~R~R 2 + 

+ 16//5C2R~ + (20fla-/2 - 20~2//a + 40~//aT)c~C2R~R 2 + 80//47C~C2Ra~] 

(7) 

- - -  [(3c~? z -  ct3)ClR 2 + 2flaC2R 2 + 6?fl2C1R 2 + ( 3 f l ?  2 -  3~2 f l  + 6~fl?)C~R1R2] 
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The computation off_l(x) can be done numerically, using the relationf_l(x ) = 
o0 

= ~ T(x, s)ds,  with the quantities R1, R2, C1, C2, l', x and l as parameters of 
o 

the integral. Evaluation off_l(x) was done with a computer program. A full dis- 
cussion and the relevant results are presented in Appendix A. 

Working point 

The purpose of the mathematical solution presented in the previous sections 
is to enable us to find out (with the help of a heat pulse and two thermometers, 
at points xl and x2) the heat capacity and thermal resistivity of sample and sub- 
strate, namely R1, R2, C~ and C2. To accomplish this we need at least four inde- 
pendent equations. Therefore, we measure experimentally T(x, t) at x = xl and 
x = x2 and calculate up to four of the moments presented in the previous Section 
and Appendix A. We thus have eight independent equations, more than needed 
to find R1, R2, C1 and (72. Due to the complicated form off2(x) and the limitation 
on the working point with f_l(x) ,  we choose to use only fo(X) and J{(x). It is ob- 
vious that we can calculate the other moments, too, or at least use their values to 
check the validity of the results obtained using only fo(X) and f~(x). 

By inspection of the expressions in the previous Section, we see that one of the 
thermometers must be at xl < l' (note that x~ cannot be equal to l'), and the other 
at x2 >- l'. 

Most of the experimental errors are contained in the measured value of T(x, t) 
and are propagated to fi(x). In order to decrease the influence of these errors, we 
must choose xl and x2 so that the coefficients of C1, C2, R~ and R2 in Eqs (6) and 
(7) will be of about the same order of magnitude. As a result we choose our 
working point to be: 

I' = l x l =  0 . 5 " l  x 2 =  1 .5" l .  

Of course, there are many other working points that can serve as well, depending 
on the special considerations for each experiment. For our choice we get: 

fo(Xl) = Q �9 l" (0.5R1 + R2) x < l 

fo(Xz) = Q " / "  0.5 �9 R2 x _> l (8) 

A(xa) - Q 13 --- .  C1R 2 + 2C2R 2 + 6CIR 2 + -~--C1R~Rz x < l 

fl(x2) =--Q'iaRa12 {3C1R1 + ~ -C2R~+ .  6C1R2) x>_ l. 

Mathematical considerations for experimental use of the methoQl 

The experimental technique involves the measurement of T(xl, t) and T(x2, t) 
simultaneously. The best way to do this is with the help of an on-line computer 
with two analog-to-digital inputs. In order to calculate the moments, we must 
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integrate T(x, t) numerically f rom t = 0 to t = oo. This large integration range 
creates two problems. The first is encountered while computing moments of  order 
n < 0. The main contribution to these moments arises for small t's. However, at 
these points the measured T(x, t) has very small values, and the experimental error 
due to electronic noise in this time region can be enormous. The best way to solve 
this problem is to smooth out the digital values for T(x, t) at small t's, using an 
analytical form of T(x, t) for t ~ 0. This problem is treated in the following Section�9 

The second problem arises f rom the fact that the measurement and the computer 
memory are naturally limited to finite t, while the integration is done to t = Go. 
We can try to measure T(x, t) up to very large value of t so that we can neglect the 
remainder. Naturally, in this way the calculation of high-order moments demands 
higher and higher t's, and the experimental difficulties are very big. Therefore, we 
prefer to find an analytical way to extrapolate T(x, t) for t --*oo. This problem is 
treated in the next to following section. 

Expansion for t ~ 0 
We can see that T(x, s) is a function of s �89 and involves cos (hs �89 and sin (hs �89 

divided by s �89 Therefore, we choose to expand T(x, s) in terms of expressions of  
1 

e - as~ 

the form We then use the mathematical relation that the inverse transform 
s�89 

~t 2 

e - ' ~  e - ~  to get expansions for T(x, t) for t ~ 0. 
Laplace of is 

s�89 ( t�89 
We use the same definitions of  e, fi and Y given previously, and define another 

[ C~R~ I�89 l' dimensionless parameter A = [ C2R1 ] and get for x _< 

at - -  e 4t + 
1 +  A 

12(37--~)2C1R1 4A lz �9 
-}- - -  e 4.t. e -  ~t (2t~(C~R2)2 +(y+a)(C1RO~)~ _ 

(1 + A) ~ 

12 1 ~ ] 

�9 e - ~ ( ( 3 v - ~ ) ( C a R ~ ) ~ + 2 / / ( C ~ R d ~ ) ~  --k much smaller t e r m s  
] 

while for x _> l '  
�9 n ~ A  ~ I 12 ! • Q I ./~.2 [ 2 Z [ -~(7(C~R~)Z+(fl--~)(C2R2)Z)~ 1 -- A 

- -  l - - I  - - l e  ,~L T ( x , t ) =  1 + A [C2] (zc.t) �89 1 + A 

2 �89 �89 1 ~ ~ 
e - ~ ( 3 r ( C ~ R , )  +( f l - -a ) (C~R2)  )2 1 - -  A - ~ ( ) , ( C t R ~ ) ~ + ( 3 f l - - ~ ) ( C z R z ) ~ )  ~ -~  

�9 - - e  

I + A  
I s -1 ~ 1 

+ e -~(~(c'R~ + much smaller terms ] 

T(x, t) = Q --~1 ~ e 

1 - -  A 4A 
1 + A (1 + A)  2 

(9) 
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Using the parameters chosen for the working point  previously, we get c~ = 
= 0.5, fl = 2 and ~ = 1, and the explicit expressions for the expansions are: 

T(O.5l, t) = Q . (  C1] (z~'t) �89 e-~~ 

12 
�9 e-i76.25C,R, 4A 

(1 + A) 2 

1 - A  

I + A  

- z ( 2 ( C 2 R  ~)~ + 1.5(C~R~)Z) 2 
e 

[2 
-=2.26CIR1 2 - A 

I + A  

,2 ! 1 ] 
4A - - ( 2  5(C1R~) z + 2(C2R2)Z) 2 

( I + A )  2 e  4t �9 - + . . .  J 

Q I 2[  "- ' ' 

12 x ! ,~ ~ t 
1 - -  A -~(3(CxR,)Z+O,5(e2R2)Z) z 1 - A - - - e e -  ~(C~R~)~ + 2.o(C~R~)b' _ 
I + A  I + A  

_ e-41@C*R~)~+l'5(C~R~)~+ . .  ']  

(20) 

This expansion is reduced to the first term for very small t. However,  we have to 
specify what  is meant  by "small  t "  during an on-line computer  experiment. 

The only way to  evaluate t during the experiment is to compare  it with t~x(x) ,  
which is the time at which the temperature  T(x, t) has its maximum value Tmax(X) �9 
�9 tma x is a directly measured value�9 We will now give estimates for  tmax(X ). 

Using one-term expansion in Eq. (10) as an approximate form of  T(x, t), we get 
1 

T(0.5L t) = Q - -  ~ e -~~ 
�9 ( G I (~t)~ 

, : (21) 
T(1.51, t) = 1 + A [C21 

F rom  Eq. (11) we can calculate tmax(X) simply by differentiation, and get: 

t ~ x  (0.51) = -~- C~g~ 

(12) 12 
tm~x(2.51 ) = -~- ((CIR,) ~ + 0.5(CzR2)�89 z 

It  is impossible to find tm,x analytically for  any longer (and more meaningful) 
expansion of  the fo rm used in Eq. (113). 

It  can be shown by numerical calculation that  for  x = 0.5.  l we have 

l ~ l z 
0.9 T "  C~. Rx < tm~, <<_ T "  Ct" R,. 
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The situation for x = 1.5/is more complicated, and by calculation of the same 
type we get a much wider range for tmax, namely 

0.64 ~-((C1R1) �89 + 0.5(C2R2)�89 2 < tmax(1.5/) ~ ((C1R1) �89 -b 0.5(C2R2)�89 2 

Coming back to the expansion for t ~ 0 (Eq. 10), we can see that the error obtained 
in T(0.5I, t) by neglecting the second term will be less than 2 70, even up to t = tma x. 
Therefore, we can use a one-term expansion in order to smooth out the data near 
t = 0 by a simple least squares fit up to a certain fraction of tmax. 

The situation for x = 1.5 �9 l is more complex. I t  can be seen that for the case 
C2R2 ,~ CIR1 it is difficult to use a one-term expansion, even for very small t. 
However, for the more realistic case where CIR1 ~-C2R2, we get that up to 
t = 0.2ts the contribution of the second term will be less than 1 700. Using Eq. 
(1:2), tmax(1.5l) > 4 �9 tmax(0.5 " 1). Thus, the absolute value of t at x = 1.5l is large 
enough for accurate numerical calculations. I f  one wants to calculate negative 
moments without a prior knowledge of the ratio C2R2/CIR1, and to reduce errors 
by smoothing out the data near t = 0, it is advisable to use the one-term expansion 
given in Eq. (1 1), with the range of t 's proposed in this Section. After completing 
the calculation and getting C1, Ca, R1 and R2, the validity of  the selected range 
must be checked for the case of  C2Rz "~ C1R1, namely to recalculate all the thermal 
parameters once again, but with a reduced t range for the fit for t ~ 0. 

In passing, we can note that the validity of  any fit to experimental data can 
always be checked by statistical methods, as part  of  the calculation of the param- 
eters of  the proposed fit. 

1 
We note that for x = 0.51, if tma x = -~- 12CxRI (a rather good approximation 

for any tm~x), we have 

Z ( t m a x )  = 0.968-Q-~ 
C 

Expansions Jbr t ~ oo 

We were unable to find an analytic expression for an expansion for T(x, t) for 
t --+ oe. However, we will show that there is a range of time values (in terms of 
tmax) that give a one-term expansion for T(x, t). Suppose the function T(x, s) has 
ev (v = 1, 2, 3 . . . )  poles of  first order; then T(x, t) can be expanded 

T(x, t) = ~ Rez (ev)e "v't (13) 
u 

Therefore, we look for the poles of  Eqs (4) and (5). We divide Eqs (4) and (5) 
into two parts;  the first is the nominator  divided by s �89 and the second is the 
denominator. I t  can be seen that for the two equations the nominator  divided by 
s ~ has no poles. Therefore, all the poles in the equations are the zero's of  the 
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denominators, namely the zero's of 

f (s  ~) = cos h(y �9 I(GRls)~) " cos h(fi " I(C2R2s) ~) + 

+ A sin h(7" l(C~R~s)~) sin h(fi" l(C2R2s) ~) 

where fl, ~ and A were defined in the previous Sections. 
By substituting 

r = ~ " t ( Q R 0 - :  + / ~  "I(C,R~)~ 

p = ~ " t ( Q R O  ~ - pl(C~R~)~ 

we get 
1 1 

f(s �89 = ~ -  (1 + A) cos h(r �9 s �89 + - f  (1 - A) cosh (ps �89 

(14) 

Since s is real, then s ~ is either real or purely imaginary. By inspection of Eq. 
(14) and taking into account that A > 0, r > 0, and [r[ > [p[, we can see that s ~ 
cannot be both real and a solution fo r f ( s  �89 = 0. Thus, we can define s ~ = iu and 
solve the equation 

f ( u ) = ( 1  + A )  c o s ( r ' u ) +  ( 1 -  A) " cos (p " u) ( 1 5 )  

I t  can also be seen that all the roots off(u)  in Eq. (15) are simple roots, and using 
Eq. (13) one gets 

T(x, t) = ~, Rez ( -u~)e  -u~'t (16) 
? 

where u~ are the roots off(u).  The residue in Eq. (16) is calculated f rom Eqs (4) 
and (5). 

From the expansion (16) we see that for large enough t 's we can use a one-term 
expansion. As previously suggested for small t, one can use a one-term approxi- 
mation as a fit for large t, using a term of the form De -Et. The validity of  such a 
fit can be checked by statistical methods during the experiment. 

In order to get an estimate of the permitted range for this one-term approxima- 
tion, we have used a computer program to calculate the first two solutions of Eq. 
(15) for a wide range of physical parameters C1, Ca, R1 and R2. For each set of  
solutions one calculates the ratio between the first two terms in the expansion of 
Eq. (16). After completing the calculation for a wide range of C1, Ca, R1 and R2, 
we limited ourselves to the range of physical interest. The main requirement is 
that C1R1 and C2R2 will differ by not more than one order of  magnitude. This 
requirement can easily be fulfilled by the right choice of the substrate. Moreover, 
this requirement is vital for the regular mathematical analysis of the heat pulse 
method [8], namely a one-dimensional heat flow. 

Restricting the ratio C1R~/C2R~ as mentioned gives a one-term expansion (Eq. 
(16)) in region I I  at x = 1.5l for t > 2 �9 tmax(1.5 �9 l), and in region I at x = 0.5 �9 l 
for t > 10 �9 tmax(0.5 " /). Since tma~(1.5 " l) > 4 " tmax(0.5 " l), the absolute values 
o f  t involved in the two locations are about the same. 
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Finally, we wish to note that it is advisable to check the conditions for one-term 
expansion after computing C1, C2, R~ and R2, in the same way as mentioned in the 
former Section. 

Electrical analog experiment 

An experimental check of the mathematical theory can be done by making an 
experiment on an electrical set-up like that of  Fig. 2 (except that in our case the 
transmission lines were replaced by discrete elements). The reasons for choosing 
this procedure to verify the theory, instead of a heat transfer experiment, are ac- 
curacy and simplicity in the experimental set-up and the actual measurements. 

, Region I. ~ . ~  Region II. w,~ 

T - T - - T  T i': T -T -T-T T :I T T 

Fig. 3. Electrical analog experimental set-up 

The discrete transmission line was composed of resistors and capacitors, and 
is shown in Fig. 3. The 6 function heat pulse Q was obtained by charging a capac- 
itor C' to a known voltage and subsequently discharging it through the trans- 
mission line. The voltage V was measured at the desired points, namely x = 0.5l 
and x = 1.5/, by two analog-to-digital inputs of a P.D.P.-8 on-line computer at 
varying rates between 1000 and 3000 points per second. At every input 100 points 
were measured as background (t < 0) and 500 points were recorded from t = 0 
to t greater than tma x. The recorded points were presented by the computer on a 
storage scope to enable a first check of the pulse. Least squares fits for the small 
and large t regions were done for every pulse. The fits were done by a one-term 
approximation at the range recommended in Sections 2.1 and 2.2. The fits were 
checked by statistical methods and by presenting the fitted line on the scope and 
comparing to the measured data. The moments f0 and f ,  were calculated from the 
experimental T(x, t) points and the fits. Using Eq. (8), the parameters C1, C~, R 1 
and R2 were derived. A complete heat pulse measurement and data analysis lasts 
about 3 minutes. We performed three sets of experiments. First, we used a homo- 
geneous discrete "transmission line" of 28 elements, each made of one capacitor 
and one resistor. We measured the resistance and capacity by the standard heat 
pulse method [7]. Secondly, we repeated the experiment using the same discrete 
"transmission line", but the measurements were made at points equivalent to 
x = 0 .5 /and x = 1.5l. Thirdly, we carried out the experiment using a heteroge- 
neous discrete "transmission line" of  14 regular elements in series with 14 elements, 
each made of two resistors and two capacitors in parallel, as presented in Fig. 3. 
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Table 1 

Results of the electrical analog experiments 

Experiment 
No. 

"Thermom- 
eter" 

position 
L 

x = l 0.5809 
x = 0 . 5  1 0.8690 
x =  1.5 l 0.2895 
x = 0.5 1 0.5799 
x =  1 .5l  ~ 0.1454 

A 

0.2047 
0.2681 
0.1076 
0.1194 
0.09033 

R, kO 

9.430 
9.405 
9.400 
9.414 
9.386 

c, ,uF 

0.104 
0.103 
0.103 
0.102 
0.104 

In this configuration we get C2 = 2C1 and R2 = 0.5RI, and again we measured 
the time-dependence at two points, equivalent to x = 0.5/and x = 1.5/. 

The results from all the measurements are presented in Table 1. In this Table the 
various experiments are presented as first, second and third experiment, as de- 
scribed above. The values denoted as R and C in Table 1 are the resistance and 
capacitance, respectively, of one resistor and one capacitor, as computed from the 
experimental results after taking into account the capacitor C'. These results are 
slightly different from the indicated values of R = 10 kf2 ___ 5 % and C = 0.1 pF ___ 
_+ 5 %, but within the indicated errors, and smaller than the relative value of one 
element (~7  %) in this discrete system. Since the difference is a feature common 
to the three measurements, we attribute this difference to the discrete nature of 
the "transmission line" used. This fact is in contrast to the case of a thermal 
transport experiment, which has a continuous nature. As the mathematical analysis 
is based on a continuous medium, no additional error will be added to thermal 
property experiments. 

Discussion 

Using a Laplace transform technique, we have solved the heat transfer equation 
for the case of a one-dimensional sample. A b-shaped heat pulse is applied at one 
end, and the sample contains two regions with different heat capacities and thermal 
conductivities. 

Using this solution and the calculation of experimentally attainable moments, 
we found a way to evaluate the heat capacities and thermal conductivities of both 
the substrate and the sample in a single experiment. The only assumptions in the 
model are those which were used in the regular heat pulse method [5]. The main 
advantage of this analysis is for absolute measurements of thermal parameters of 
thin film in cases where the parameters of the substrate and sample are of about 
the same order of magnitude and neither can be neglected. 

The method is particularly good for on-line computer experiments similar to 
those used by us in the electrical analog experiment. The mathematics presented 
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here enables the user to avoid experimental errors due to noise by using fits to the 
beginning and tail of the measured heat pulses, and to check his results by the 
computation of other moments. We have recommended a working point where 
xl = 0.5/, x-o = 1.5/and l' = l, but of course many other points can be used. 

The accuracy of the measurements can be greatly improved by repeating the 
heat pulse many times before analysing the data, thus decreasing the influence of 
electronic noise. 

A reaMife thermal transfer experiment has to be performed, using two small 
thermometers. The sample has to be prepared by depositing the desired thin film 
on only half (if l' = l) of the substrate length. The thermometers will then be at- 
tached to the centers of the two regions and the temperature rises will be measured 
and fed to the on-line computer simultaneously. 

A p p e n d i x  A :  Computa t ion  o f f  _ l (x )  

The computation of f_ l (x)  cannot be done analytically. Therefore, we will give 
numerical estimates. From section "Theory. The moments method" we have: 

o0 

f - l ( x )  = f T(x ,  s)ds 
0 

The physical quantities R1, R-o, (71, C.o, 1, l' and x are presented here as parameters. 
In order to perform the computer numerical evaluation off_l(x) ,  we have trans- 
formed s to the interval [0, 1 ]. We get for x < l '  

2Q I R1]  ~ [" d x  I C1R1J 1 - x ] sin h ? I - x  
f 

[ - - [ I  CIJ  J (1 : x) 2 x [ B  IC2R21 �89  x I' or 
o cos h ~  _ cos h 

x J x j 

A sin h I C~7~SJ 1 - - -Zx-t  cos h - 2 1 x 
or 

Asinh 1 - x [ C1R* J l - x ]  

and for x _> l' 

1 
2Q f - l (X)  = dx 

- -  X) 2 
0 

X 
sin h 

1 - x  

1 - x ) l ~ ! C2R-O~ 1 - x J 

s n I t l" t' x 
[ C2R2 '  1 - x 

where e, fl, ? and A were defined earlier. 
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At our  working point  x = 0.5l, we have ~ = 0.5 and - -  fi = 1. We also limit 

ourselves to the range of  physical interest, i.e. C~R~ = C2Rz. Representative cal- 
C2R2 

culations were done for the interval 0.8 _< < 1.2. First we assume A > 1 
C1R1 -- 

(which is equivalent to C1 > C2) and we obtain 

.f-1(0.5/) = 1.1850 + 0.2671 IC-~R~I ) + 0.1943 ~ C1R1 ] (A1) 

C1R1 
For  1 < C2R2 -< 1.45, the maximum error for  all the mentioned range is less 

than 0.1 ~ ,  while the mean error is 0.03 ~ .  For  a wider interval we obtain similar 
expansions, but  with a larger error margin. 

F o r A  < l ( o r C 2 _  G )  w e g e t  
[ 1 1 

[ C1R~ 1 ~_ [ C2R2 i ~ (A2) f_a(0.51) = 1.1810 - 0.2927 [ C2R1 ] 0.1722 [ QRI ] 

I QR~ 
For  0.65 _< [ C-~-~-~ } -< 1, the involved errors are about  the same as in Eq. (A1). 

For  x = 1.5l we get --/~ = 2 and ~ = 2. I f  we choose the same range of  values for  

A as in Eqs (A1) and (A2), we get for  C1 > C2 

f_1(1.51) = 0.2856 - 0.03626 [ C1R21 [ C1R1 ]I [ C2R~ ] - 0.06334 / C2R2 ) (A3) 

and for Ca > C1 

[ C1R2 I ~ ( C1R1 ]~ (A4) 
f_1(1.5l) = 0.30548 + 0.04355 1 C.~R1 ] + 0.06965 [ C2Re ] 

The maximum error  in (A3) and (A4) is 0 . 3 ~ ,  and the mean error is 0.1 ~ .  
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RI~SUMI~ --. On pr6sente une m6thode math6matique reposant sur les techniques de transfor- 
mation de Laplace, pour l'analyse des mesures de capacit6 calorifique et de conductivit6 ther- 
mique, dans le cas des 6chantillons en pellicules minces sur des substrats de longueurs finies. 
La m6thode repr6sente un d6veloppement ult6rieur de la technique des pulsations de chaleur. 
Cette analyse math6matique est capable de s6parer la capacit6 calorifique et la conductivit6 
thermique de l'6chantillon de celles du substrat, en 6liminant ainsi la n6cessit6 d 'une mesure 
supppl6merltaire du substrat seul. Ce fair r6duit rlotablement les erreurs et la complexit6 de 
l'exp6rience et rend la technique des pulsations thermiques la seule capable d'obtenir des para- 
m~tres thermiques de pellicules minces ti partir d 'une seule expdrierlce. L'analyse des donn6es 
exp6rimentales s'effectue en calculant/i divers moments l 'augmentation de la temp6rature de 
deux thermom6tres, en fonction du temps. Des mesures sp6ciales out 6t6 prises pour adapter 
la m6thode ~t des exp6rierlces sur ordinateur en ligne. 

ZUSAMMENFA$SUNG - -  Eine auf Laplace-scher Transformationstechnik beruhende mathema- 
tische Methode zur Analyse vorl W~irmekapazit/its- und W/irmeleitungsmessungen ffir Dfinn- 
schichtproben auf Substraten begrenzter L/ingen wird vorgestellt. Die Methode ist eine Weiter- 
entwicklung der W/irmepulstechnik. Diese mathematische Analyse vermag die W/irmekapazi- 
t/it und W/irmeleitf/ihigkeit der Probe yon denen des Substrats zu trennen, wodurch sich die 
zushtzliche Messung des Substrats allein erfibrigt. Hierdurch werden Fehler und Komplexit/it 
des Versuchs bedeutend reduziert und die W/irmepuls-Methode erweist sich als erstes Verfahrerl 
bei dem die thermischen Parameter dfinner Filme in einem eirlzigen Versuch ermittelt werden 
k6nnen. Die Analyse der Versuchsdaten wird durch die Berechnung verschiedener Momente 
des Temperaturanstiegs in zwei Thermometern als Funktion der Zeit durchgeffihrt. Besondere 
Mal3nahmen wurden bei der Anpassung der Methode ffir on-lirle Computerversuche herfick- 
sichtigt. 

Pe3K)Me - -  Ilpe)xCTaBJleH MaTeMaTlei,feci(ri~ MeTO~, OCttOBaUllbll~ Ha upeo6pa30BarlHfl 5Iannaca, 
~2i~i anasi~i3a rlaMepel-ii, l~ TeFIJ/OeMKOCT!I tI TepMonpoBO~IlIMOCTIt TOHKOHJIeHO'~IrlBIX o6paalIOB Ha 
IIO~IJIOX~Ke KOHeKrlBL~ )IJn-IHBI. ~)TOT MeTO,K ~BJI~IeTC~I ~IaylbiIe~mHM pa3B!elTIleM TexmlKll TenYlOBOFO 
HMllyYibca. MaTeMaTrI~ecKmTt aHa~irI3 IIO3BO.rrlteT paa,KeJ/ltTb TerlJ'IOeMKOCTt, ~ TepMorlpOBO~HOCTt, 
06pa3,Ia !/I no)IJIOX~Krt, ~ITO, C.IIe)IOBaTeJIBHO, ycTpanIteT Heo6xo~KMOCTb ,/IOIIOJIH!ITeJn, rlOrO lI3Me- 
permit caMoii iio~iJioxryffI. MeTo~X 3HaqllTeJIbHO iioI-iri~aeT omi~6i,:i~ rI C,IIO)KI:IOCTb 3KCllepHMeHTa Et 
~iey~aeT MeTO~K TenYlOBOFO I4MnyJIbca e~IItlCTBeHHI, IM MeTO~OM IlOay,leHl,I~ TepMII~IeCKaX napaMeT- 
poB TOHKHX nJIeHOK C HOMOIIIJ, IO O,aHoro Yl3MepeH~t~r. ArlaJm3 alCcliepi~MeHTam~rlblX )IaI-IHbIX IIpO- 
BO~]:IIJIII rlyTeM Bl:,IqllC.rletI!IIt HeCKO2IbKIIX MoMeHTOB 17OJI~eMa TeMllepaTypl~I B ~Byx TepMOMeTpax 
KaK qbyFrKtlmO speMerm~. IlpeacTaBJIerm, i coo6paxcerm~I o tlp~MermMOCTi~ K aTOMy 9BM, pa6oTa- 
/OLKeH B pe~l,iMe <~Ha JIItHrlrI~>. 
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